Dynamics Notes

2 – Forces in 2-D

			vith consideration t			_ and	·	
<u>x</u> wo students push Student A pushes oushes with 48 N S Vhat is the resulta	with 75 N East ar outh.	nd Student						
riat is the resulta	int force acting o	n the box:						
			ţ					
there are more tl	nan two forces th	en it is hes	t to solve for the re	scultant using	the			
		1011 10 13 1003	to solve for the re	suitant using	3 1110			
<u>«</u>								
esolve these force	vectors into the	ir x and y c	omponents and de	termine the	total net forc	e.		
				Ŷ				
				No Resident Association				
$F_1 = 35 \text{ N}$			50°					
20°			$F_2 = 45 \text{ N}$				$F_3 = 65 \text{ N}$	
20								
	*	ž.		A				
¥ .								
			•					
e .								
			ě.					
			į					

Ex: A 1.12 kg textbook is pushed horizontally against a wall with a coefficient of friction of 0.465. What is the least amount of force required to keep the book from slipping?

Ex: Two blocks ($m_1 = 2.0 \text{ kg}$ and $m_2 = 3.0 \text{ kg}$) are connected by a rope as shown. m_1 is pulled to the right with a force of 18 N along a frictionless surface. What is the tension in the rope connecting the two masses?

Ex: A 65 kg student stands on a bathroom scale in an elevator and notices that it reads 520 N. Determine the magnitude and direction of the acceleration of the elevator.

Dynamics Notes.

Ex. 1: Two studends.

$$R = X^{2} + y^{2}$$
 $R = \sqrt{75^{2} + 48^{2}}$
 $= 89N$

Ex.2

$$F_x = 35 \cos 20^\circ$$

= 32.889...

$$F_{x} = 45 \times \cos 50$$

= 31.819...

$$R_{x} = 32.889.... + 31.819.... + 65$$

= 129.7
 $R_{y} = 11.9707 - 34.4719.... + 0$

$$\begin{array}{c} 129.7 \\ \hline \begin{array}{c} \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \\ \hline \\ \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \\ \hline \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \\ \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \hline \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\$$

$$=(8+36)\bar{a}$$

=(8+36)(2,25)

Need R /FA

$$Cos 32^{\circ} = \frac{F_{Ax}}{F_{A}}$$
 $F_{A} = \frac{99}{cos 32^{\circ}}$
 $Cos 32^{\circ} = \frac{99}{cos 32^{\circ}}$