<u>Unit 4: Newton's Laws</u> - FBDs | Force | Description | Ex 1: A box is pushed across a rough floor at a constant velocity. | |---|--|--| | | | | | | | Ex 2: A hockey player glides on frictionless ice at a constant velocity. | | 1. A book is | at rest on a table top. | The state of s | | 2. A girl is suspended motionless from a bar which hangs from the ceiling by two ropes. | | 7. A college student rests a backpack upon his shoulder. The pack is suspended motionless by one strap from one shoulder. | | 3. An egg is
Neglect air re | free-falling from a nest in a tree. esistance. | 8. A skydiver is descending with a constant velocity. Consider air resistance. | | 4. A plane flies at a constant velocity (Note : there will be an applied force generated by the engines as well as a lift force provided by the wings). | | 9. A force is applied to the right to drag a sled across loosely-packed snow with a rightward acceleration. | | move it acros | rd force is applied to a book in order to ss a desk with a rightward acceleration. ctional forces. Neglect air resistance. | 10. A football is moving upwards towards its peak after having been <i>booted</i> by the punter. | | 6. A rightward force is applied to a book in order to move it across a desk at constant velocity. Consider frictional forces. Neglect air resistance. | | 11. A car is coasting to the right and slowing down. Diagram the forces acting upon the car. | | Force | Description | |----------------|--| | Fq | Force of gravity | | Fapp | Applied force -> any push | | F ₄ | Force of friction - generally against motion | | FN | Normal force - supporting force | | T | Tension -> force along a rope | | F_{E} | Elastic force -> springs etc. | | Fair | Air resistance | 1. A book is at rest on a table top. 2. A girl is suspended motionless from a bar which hangs from the ceiling by two ropes. 3. An egg is free-falling from a nest in a tree. Neglect air resistance. Only Fg 4. A plane flies at a constant velocity (Note: there will be an applied force generated by the engines as well as a lift force provided by the wings). 5. A rightward force is applied to a book in order to move it across a desk with a rightward acceleration. Consider frictional forces. Neglect air resistance. 6. A rightward force is applied to a book in order to move it across a desk at constant velocity Consider frictional forces. Neglect air resistance. Ex 1: A box is pushed across a rough floor at a constant velocity. a=0 Fint: 0 Ex 2: A hockey player glides on frictionless ice at a constant velocity. 7. A college student rests a backpack upon his shoulder. The pack is suspended motionless by one strap from one shoulder. 8. A skydiver is descending with a constant velocity. Consider air resistance. 9. A force is applied to the right to drag a sled across loosely-packed snow with a rightward acceleration. 10. A football is moving upwards towards its peak after having been booted by the punter. 11. A car is coasting to the right and slowing down. Diagram the forces acting upon the car. ## Worksheet 4.1 Newton's 2nd Law 1\For each of the following diagrams determine the magnitude and direction of the net force. 2) Use the information given for each diagram to fill in all missing blanks. $$m = 5 \text{ kg}$$ $$a = \underline{\qquad} m/s^2$$ $$m = 8 \text{ kg}$$ $a = ____ m/s^2$ $$m = 40 \text{ kg}$$ a = 4 m/s² right $$m = ____$$ $a = ____ m/s^2$